Right join of x and y
Arguments
- x, y
- data.frame-like objects (plain,- data.table, tibble,- sf,- list, etc.) or else both omitted for a mock join statement with no data. See Details.
- on
- A character vector of join predicates, e.g. - c("id", "col_x == col_y", "date > date", "cost <= budget").
- match.na
- Whether to allow equality matches between - NAs or- NaNs. Default- FALSE.
- mult.x
- When a row of - xhas multiple matching rows in- y, which to accept:- "all"(the default),- "first", or- "last".
- mult.y
- When a row of - yhas multiple matching rows in- x, which to accept:- "all"(the default),- "first", or- "last". Can be combined with- mult.x.
- indicate
- Whether to add a column - ".join"at the front of the result, with values- 1Lif from- xonly,- 2Lif from- yonly, and- 3Lif joined from both tables (c.f.- _mergein Stata). Default- FALSE.
- order
- Whether the row order of the result should reflect - xthen- y(- "left") or- ythen- x(- "right"). Default- "left".
- select, select.x, select.y
- Character vectors of columns to be selected from either input if present ( - select) or specifically from one or other of them (e.g.- select.x).- NULL(the default) selects all columns. Use- ""or- NAto select no columns. Join columns are always selected. See Details.
- prefix.y
- A prefix to attach to column names in - ythat are the same as a column name in- x. Default- "R.".
- on.first
- Whether to place the join columns first in the join result. Default - FALSE.
- both
- Whether to include - y's equality join column(s) separately in the output, instead of combining them with- x's Default- FALSE. Note that non-equality join columns from- xare always included separately.
- do
- Whether to execute the join. If - FALSE,- showis set to- TRUEand the data.table code for the join is printed to the console instead. Default is- TRUEunless- xand- yare both omitted/- NULL, in which case a mock join statement is produced. See Details.
- show
- Whether to print the data.table code for the join to the console. Default is the opposite of - do. If- xand- yare both omitted/- NULL, mock join code is displayed.
Value
A data.frame, data.table, (grouped) tibble, sf,
or sf-tibble, or else NULL if do is FALSE. See
Details.
Details
Input and output class
Each input can be any object with class data.frame, or a plain
list of same-length vectors.
The output class depends on x as follows:
- a - data.tableif- xis a pure- data.table
- a tibble if it is a tibble (and a grouped tibble if it has class - grouped_df)
- an - sfif it is an- sfwith its active geometry selected in the output
- a plain - data.framein all other cases
The following attributes are carried through and refreshed: data.table
key, tibble groups, sf agr (and bbox etc. of all
individual sfc-class columns regardless of output class). See below
for specifics.
Using select, select.x, and select.y
Used on its own, select keeps the join columns plus the
specified non-join columns from both inputs if present.
If select.x is provided (and similarly for select.y) then:
- if - selectis also specified, non-join columns of- xnamed in either- selector- select.xare included
- if - selectis not specified, only non-join columns named in- select.xare included from- x. Thus e.g.- select.x = ""excludes all of- x's non-join columns.
Non-existent column names are ignored without warning.
Column order
When select is specified but select.x and select.y are
not, the output consists of all join columns followed by the selected
non-join columns from either input in the order given in select.
In all other cases:
- columns from - xcome before columns from- y
- within each group of columns, non-join columns are in the order given by - select.x/- select.y, or in their original data order if no selection is provided
- if - on.firstis- TRUE, join columns from both inputs are moved to the front of the overall output.
Using mult.x and mult.y
See the Examples for an application of using mult.x and mult.y
together. Note that mult.y is applied after mult.x except with
order = "right".
Displaying code and 'mock joins'
The option of displaying the join code with show = TRUE or by passing
null inputs is aimed at data.table users wanting to use the package as
a cookbook of recipes for adaptation. If x and y are both
NULL, template code is displayed based on join column names implied by
on, plus sample non-join column names. select arguments are
ignored in this case.
The code displayed is for the join operation after casting the inputs as
data.tables if necessary, and before casting the result as a tibble
and/or sf if applicable. Note that fjoin departs from the usual
j = list() idiom in order to avoid a deep copy of the output made by
as.data.table.list. (Likewise, internally it takes only shallow copies
of columns when casting inputs or outputs to different classes.)
tibble groups
If x is a grouped tibble (class grouped_df), the
output is grouped by the grouping columns that are selected in the result.
data.table keys
If the output is a data.table, it inherits a key as follows:
- fjoin_inneror- fjoin_leftwith- order = "left"(default):- x's- keyif present
- fjoin_inneror- fjoin_rightwith- order = "right":- y's- keyif present
If not all of the key columns are selected in the result, the leading subset is used.
sf objects and sfc-class columns
Joins between two sf objects are supported. The active geometry and
relation-to-geometry attribute agr are determined by x. All
sfc-class columns in the output are refreshed after joining (using
sf::st_sfc() with recompute_bbox = TRUE); this is true
regardless of whether or not the inputs and output are sfs.
See also
See the package-level documentation fjoin for related
 functions.
Examples
# ---------------------------------------------------------------------------
# True joins (inner/left/right/full): basic usage
# ---------------------------------------------------------------------------
# data frames
x <- data.table::fread(data.table = FALSE, input = "
  country  pop_m
Australia   27.2
   Brazil  212.0
     Chad    3.0
")
y <- data.table::fread(data.table = FALSE, input = "
  country forest_pc
   Brazil      59.1
     Chad       3.2
  Denmark      15.8
")
NULL # section break
#> NULL
fjoin_full(x, y, on = "country", indicate = TRUE)
#>   .join   country pop_m forest_pc
#> 1     1 Australia  27.2        NA
#> 2     3    Brazil 212.0      59.1
#> 3     3      Chad   3.0       3.2
#> 4     2   Denmark    NA      15.8
fjoin_left(x, y, on = "country", indicate = TRUE)
#>   .join   country pop_m forest_pc
#> 1     1 Australia  27.2        NA
#> 2     3    Brazil 212.0      59.1
#> 3     3      Chad   3.0       3.2
fjoin_right(x, y, on = "country", indicate = TRUE)
#>   .join country pop_m forest_pc
#> 1     3  Brazil   212      59.1
#> 2     3    Chad     3       3.2
#> 3     2 Denmark    NA      15.8
fjoin_inner(x, y, on = "country", indicate = TRUE)
#>   .join country pop_m forest_pc
#> 1     3  Brazil   212      59.1
#> 2     3    Chad     3       3.2
# ---------------------------------------------------------------------------
# Core options and arguments (in a 1:1 equality join with fjoin_full())
# ---------------------------------------------------------------------------
# data frames
dfQ <- data.table::fread(data.table = FALSE, quote ="'", input = "
id quantity                   notes other_cols
 2        5                      ''        ...
 1        6                      ''        ...
 3        7                      ''        ...
NA        8  'oranges (not listed)'        ...
")
dfP <- data.table::fread(data.table = FALSE, input = "
id     item price other_cols
NA   apples    10        ...
 3  bananas    20        ...
 2 cherries    30        ...
 1    dates    40        ...
 ")
NULL # section break
#> NULL
# (1) basic syntax
# cf. dplyr: full_join(dfQ, dfP, join_by(id), na.matches = "never")
fjoin_full(dfQ, dfP, on = "id")
#>   id quantity                notes other_cols     item price R.other_cols
#> 1  2        5                             ... cherries    30          ...
#> 2  1        6                             ...    dates    40          ...
#> 3  3        7                             ...  bananas    20          ...
#> 4 NA        8 oranges (not listed)        ...     <NA>    NA         <NA>
#> 5 NA       NA                 <NA>       <NA>   apples    10          ...
# (2) join-select in one line
fjoin_full(dfQ, dfP, on = "id", select = c("item", "price", "quantity"))
#>   id     item price quantity
#> 1  2 cherries    30        5
#> 2  1    dates    40        6
#> 3  3  bananas    20        7
#> 4 NA     <NA>    NA        8
#> 5 NA   apples    10       NA
# equivalent operation in dplyr
# x <- dfQ |> select(id, quantity)
# y <- dfP |> select(id, item, price)
# full_join(x, y, join_by(id), na.matches = "never") |>
#   select(id, item, price, quantity)
NULL # section break
#> NULL
# (an aside) equality matches on NA if you insist
fjoin_full(dfQ, dfP, on = "id", select = c("item", "price", "quantity", "notes"), match.na = TRUE)
#>   id     item price quantity                notes
#> 1  2 cherries    30        5                     
#> 2  1    dates    40        6                     
#> 3  3  bananas    20        7                     
#> 4 NA   apples    10        8 oranges (not listed)
# (3) indicator column (in Stata since 1984)
fjoin_full(
  dfQ,
  dfP,
  on = "id",
  select = c("item", "price", "quantity"),
  indicate = TRUE
)
#>   .join id     item price quantity
#> 1     3  2 cherries    30        5
#> 2     3  1    dates    40        6
#> 3     3  3  bananas    20        7
#> 4     1 NA     <NA>    NA        8
#> 5     2 NA   apples    10       NA
# (4) order rows by y then x
fjoin_full(
  dfQ,
  dfP,
  on = "id",
  select = c("item", "price", "quantity"),
  indicate = TRUE,
  order = "right"
)
#>   .join id     item price quantity
#> 1     2 NA   apples    10       NA
#> 2     3  3  bananas    20        7
#> 3     3  2 cherries    30        5
#> 4     3  1    dates    40        6
#> 5     1 NA     <NA>    NA        8
# (5) display code instead
fjoin_full(
  dfQ,
  dfP,
  on = "id",
  select = c("item", "price", "quantity"),
  indicate = TRUE,
  order = "right",
  do = FALSE
)
#> .DT : x = dfQ (cast as data.table)
#> .i  : y = dfP (cast as data.table)
#> Join: setDF(with(list(fjoin.temp = setDT(.DT[, fjoin.which.DT := .I][, na.omit(.SD, cols = "id"), .SDcols = c("id", "quantity", "fjoin.which.DT")][, fjoin.ind.DT := TRUE][.i, on = "id", data.frame(.join = fifelse(is.na(fjoin.ind.DT), 2L, 3L), id, item, price, quantity, fjoin.which.DT), allow.cartesian = TRUE])), rbind(fjoin.temp, setDT(.DT[!fjoin.temp$fjoin.which.DT, data.frame(id, quantity, fjoin.which.DT, .join = rep(1L, .N))]), fill = TRUE))[, fjoin.which.DT := NULL])[]
#> 
# ---------------------------------------------------------------------------
# M:M inequality join reduced to 1:1 using `mult.x` and `mult.y`
# ---------------------------------------------------------------------------
# data.table (`mult`) and dplyr (`multiple`) have options for reducing the
# cardinality on one side of the join from many ("all") to one ("first" or
# "last"). fjoin (`mult.x`, `mult.y`) permits this on either side of the
# join, or on both sides at once.
# This example (using `fjoin_left()`) shows an application to temporally
# ordered data frames of "events" and "reactions".
# data frames
events <- data.table::fread(data.table = FALSE, input = "
event_id event_ts
       1       10
       2       20
       3       40
")
reactions <- data.table::fread(data.table = FALSE, input = "
reaction_id reaction_ts
          1          30
          2          50
          3          60
")
NULL # section break
#> NULL
# (1) for each event, all subsequent reactions (M:M)
fjoin_left(
  events,
  reactions,
  on = c("event_ts < reaction_ts"),
)
#>   event_id event_ts reaction_id reaction_ts
#> 1        1       10           1          30
#> 2        1       10           2          50
#> 3        1       10           3          60
#> 4        2       20           1          30
#> 5        2       20           2          50
#> 6        2       20           3          60
#> 7        3       40           2          50
#> 8        3       40           3          60
# (2) for each event, the next reaction (1:M)
fjoin_left(
  events,
  reactions,
  on = c("event_ts < reaction_ts"),
  mult.x = "first"
)
#>   event_id event_ts reaction_id reaction_ts
#> 1        1       10           1          30
#> 2        2       20           1          30
#> 3        3       40           2          50
# (3) for each event, the next reaction, provided there was no intervening event (1:1)
fjoin_left(
  events,
  reactions,
  on = c("event_ts < reaction_ts"),
  mult.x = "first",
  mult.y = "last"
)
#>   event_id event_ts reaction_id reaction_ts
#> 1        1       10          NA          NA
#> 2        2       20           1          30
#> 3        3       40           2          50
